$tokenizer
$tokenizer : \Camspiers\StatisticalClassifier\Tokenizer\TokenizerInterface
Tokenizer (the way of breaking up documents)
An implementation of a Naive Bayes classifier.
This classifier is based off Tackling the Poor Assumptions of Naive Bayes Text Classifiers by Jason Rennie
$tokenizer : \Camspiers\StatisticalClassifier\Tokenizer\TokenizerInterface
Tokenizer (the way of breaking up documents)
$normalizer : \Camspiers\StatisticalClassifier\Normalizer\NormalizerInterface
Take tokenized data and make it consistent or stem it
$dataSource : \Camspiers\StatisticalClassifier\DataSource\DataSourceInterface
$model : \Camspiers\StatisticalClassifier\Model\ModelInterface
The model to apply the transforms to
__construct(\Camspiers\StatisticalClassifier\DataSource\DataSourceInterface $dataSource, \Camspiers\StatisticalClassifier\Model\ModelInterface $model, \Camspiers\StatisticalClassifier\Tokenizer\TokenizerInterface $tokenizer, \Camspiers\StatisticalClassifier\Normalizer\NormalizerInterface $normalizer)
Create the Naive Bayes Classifier
\Camspiers\StatisticalClassifier\DataSource\DataSourceInterface | $dataSource | |
\Camspiers\StatisticalClassifier\Model\ModelInterface | $model | An model to store data in |
\Camspiers\StatisticalClassifier\Tokenizer\TokenizerInterface | $tokenizer | The tokenizer to break up the documents |
\Camspiers\StatisticalClassifier\Normalizer\NormalizerInterface | $normalizer | The normaizer to make tokens consistent |
setModel(\Camspiers\StatisticalClassifier\Model\ModelInterface $model)
\Camspiers\StatisticalClassifier\Model\ModelInterface | $model |
setDataSource(\Camspiers\StatisticalClassifier\DataSource\DataSourceInterface $dataSource)
\Camspiers\StatisticalClassifier\DataSource\DataSourceInterface | $dataSource |
preparedModel() : \Camspiers\StatisticalClassifier\Model\ModelInterface
Return an model which has been prepared for classification