PHP Classifier

A PHP implementation of a Naive Bayes statistical classifier, including a structure for building other classifiers, multiple data sources and multiple caching backends.


Project maintained by camspiers Hosted on GitHub Pages — Theme by mattgraham

PHP Classifier uses semantic versioning, it is currently at major version 0, so the public API should not be considered stable.

What is it?

PHP Classifier is a text classification library with a focus on reuse, customizability and performance. Classifiers can be used for many purposes, but are particularly useful in detecting spam.

Features

Installation

$ composer require camspiers/statistical-classifier

SVM Support

For SVM Support both libsvm and php-svm are required. For installation intructions refer to php-svm.

Usage

Non-cached Naive Bayes

use Camspiers\StatisticalClassifier\Classifier\ComplementNaiveBayes;
use Camspiers\StatisticalClassifier\DataSource\DataArray;

$source = new DataArray();
$source->addDocument('spam', 'Some spam document');
$source->addDocument('spam', 'Another spam document');
$source->addDocument('ham', 'Some ham document');
$source->addDocument('ham', 'Another ham document');

$classifier = new ComplementNaiveBayes($source);
$classifier->is('ham', 'Some ham document'); // bool(true)
$classifier->classify('Some ham document'); // string "ham"

Non-cached SVM

use Camspiers\StatisticalClassifier\Classifier\SVM;
use Camspiers\StatisticalClassifier\DataSource\DataArray;

$source = new DataArray()
$source->addDocument('spam', 'Some spam document');
$source->addDocument('spam', 'Another spam document');
$source->addDocument('ham', 'Some ham document');
$source->addDocument('ham', 'Another ham document');

$classifier = new SVM($source);
$classifier->is('ham', 'Some ham document'); // bool(true)
$classifier->classify('Some ham document'); // string "ham"

Caching models

Caching models requires maximebf/CacheCache which can be installed via packagist. Additional caching systems can be easily integrated.

Cached Naive Bayes

use Camspiers\StatisticalClassifier\Classifier\ComplementNaiveBayes;
use Camspiers\StatisticalClassifier\Model\CachedModel;
use Camspiers\StatisticalClassifier\DataSource\DataArray;

$source = new DataArray();
$source->addDocument('spam', 'Some spam document');
$source->addDocument('spam', 'Another spam document');
$source->addDocument('ham', 'Some ham document');
$source->addDocument('ham', 'Another ham document');

$model = new CachedModel(
	'mycachename',
	new CacheCache\Cache(
		new CacheCache\Backends\File(
			array(
				'dir' => __DIR__
			)
		)
	)
);

$classifier = new ComplementNaiveBayes($source, $model);
$classifier->is('ham', 'Some ham document'); // bool(true)
$classifier->classify('Some ham document'); // string "ham"

Cached SVM

use Camspiers\StatisticalClassifier\Classifier\SVM;
use Camspiers\StatisticalClassifier\Model\SVMCachedModel;
use Camspiers\StatisticalClassifier\DataSource\DataArray;

$source = new DataArray();
$source->addDocument('spam', 'Some spam document');
$source->addDocument('spam', 'Another spam document');
$source->addDocument('ham', 'Some ham document');
$source->addDocument('ham', 'Another ham document');

$model = new Model\SVMCachedModel(
	__DIR__ . '/model.svm',
	new CacheCache\Cache(
		new CacheCache\Backends\File(
			array(
				'dir' => __DIR__
			)
		)
	)
);

$classifier = new SVM($source, $model);
$classifier->is('ham', 'Some ham document'); // bool(true)
$classifier->classify('Some ham document'); // string "ham"

Unit testing

statistical-classifier/ $ composer install --dev
statistical-classifier/ $ phpunit